Estimating and predicting FF CO₂ fluxes using top-down NOx emissions and CO₂ observations and inventories # Kazuyuki Miyazaki, Kevin Bowman Jet Propulsion Laboratory, California Institute of Technology - OH coupling (CH₄) - Combustion process (NOx, CO, CO₂) - Joint emission optimization Reuter et al., 2019 Monitoring localized CO₂ emissions: co-located regional CO₂ (OCO-2) and NO₂ (S5P) enhancements - The signatures of regional FF CO₂ emissions in CO₂ observations are typically weak relative to regional background concentration, except near hot spots sources. - The use of proxy species (NO₂, CO) for CO₂ flux estimates is justified because their satellite measurements are known to contain a strong signal associated with human activities - CO₂-AQ emission ratios can be used to understand emission processes (combustion type, new technology and regulation) and improve bottom-up inventories # Hybrid FF CO₂ emissions using AQ measurements Konovalov et al., 2016, ACP - 1. Top-down NOx and CO emission estimates using satellite measurements - 2. Apply emissions factors (NOx/CO₂ ratios from bottom-up inventories) to relate FF CO₂ emissions to the NOx emissions strongly rely on top-down NOx emission estimates and emission ratios in bottom-up inventories #### Characterizing regional-scale combustion using CO, NO₂, and CO₂ obs - Satellite observations of the CO-NO₂-CO₂ ratio patterns are able to distinguish between combustion types. There is no distinction between the various developed and developing regions in bottom-up inventories. - Multi-species observations can provide constraints on emission inventories, and be useful in monitoring trends and understanding combustion. Silva and Arellano, 2017 - 1. Temporal evolutions of top-down NOx emissions and CO₂ emission inventories - 2. Understand long-term changes in emission ratios and emission processes - 3. Predict CO₂ fluxes using emission ratio trajectories and up-to-date NOx emissions → improve NOx, CO, SO₂ emission estimates with reduced model errors unrelated to emissions #### TCR-2 NOx trend #### ODIAC CO₂ trend How will changes in air quality mitigation impact carbon emissions? - ODIAC CO2 - ODIAC CO2 (predicted from a 2011-2016 NOx-CO2 linear regression) - TCR NOx - ODIAC CO2 - ODIAC CO2 (predicted from a 2011-2016 NOx-CO2 linear regression) - TCR NOx → Implications for changes in emission factors and activity Implementation of new technology and regulation? **ODIAC** **Predicted** 2017 Strong year-to-year variations in emission factors, activity, and emission ratios for India, SE Asia, and the Middle east? → improvements of emission inventories, understanding of emission processes By making an emission ratio trajectory (temporally varying) and using up-to-date NOx emission estimates (- a week delay), we could obtain near-real time FF CO₂ fluxes, without waiting for statistical information needed for FF CO₂ inventories! #### Multi-species (NOx + CO + SO₂) constraints on FF CO₂ flux Different aspects of the combustion technology are expected to affect those emissions in different ways: e.g., NOx emissions are strongly dependent on the temperature of combustion (more NOx is released at higher T), CO emissions can be regarded as a measure of the incompleteness of combustion processes. Strong SO₂ emissions from volcanic eruptions. #### Listing strong emission points using top-down NOx emissions Strong FF emission points from top-down estimates → Any missing points in the OCO-3 ODIAC target list? High resolution global data assimilation of TROPOMI NO₂ + Joint emission estimation OCO-3 CO₂